

Summary of Fuel and Ash Analysis of Wood Residue of a Cabinet Workshop

			MED	from silo #1	pure particle board	MFP with	MFP with	MED	ac comparisor	
			МГР		board	170 Sanu	470 Saliu	мгр	as comparisor	
			Jan 18 -	March 7 -	March 7 -	March 14 -	March 14 -	March 14 -	MDF (fron	n
			sample #1	sample #1	sample #2	sample #1	sample #1	sample #2	Internet) <u>Method</u>
			as received	as received	as received	as received	as received	as received		
Fuel Analysi	Fuel Analysis % Total Moisture		6.87%	7.07%						ASTM D4442 (Method A)
	% Ash		0.98%	1.08%						ASTM D1102
	Gross Calorific Value	2	7,790 BTU/lb	7,790 BTU/lb						ASTM D3286
			18.12 GJ/t	18.12 GJ/t						
	% Volatile Matter		72.36%							ASTM D3175
	% Fixed Carbon		19.79%	46.39%						ASTM D3172 (calc.)
	% Sulfur		0.03%	0.05%						ASIM D4239 (Method C)
Ach Analysis	Analuta									Mathad
ASIT Allarysis	Silicon dioxide	SiO2	25 50%	24 97%	20.28%				32 90%	ASTM D3682
	Aluminum oxide	AI203	5 51%	5 0/1%	4 08%				3 510/	
	Titanim dioxide		3 40%	3 78%	1 33%				0.30%	
	Iron ovide	Ee203	1 53%	2.06%	1.55%				4 47%	ASTM D3682
			16 91%	17 56%	16 69%				32 97%	
	Magnesium oxide	MaQ	4 33%	4 82%	4 15%				5.03%	ASTM D3682
	Potassium oxide	K20	10.67%	9.00%	5 17%				5 330	
	Sodium oxide	Na2O	6.52%	8.58%	9.97%				9.54%	ASTM D3682
	Sulfur trioxide	503	13.58%	2.78%	2.05%				3.00%	ASTM D3682
	Phosphorus pentoxic	d€P205	1.89%	2.05%	1.56%				3.11%	ASTM D3682
	Strontium oxide	SrO	0.10%	0.11%	0.12%				0111	ASTM D3682
	Barium oxide	BaQ	0.72%	0.80%	0.87%					ASTM D3682
	Managenese oxide	MnxOv	1.13%	1.17%	1.04%					ASTM D3682
	MAA T250	- 1	2079°F	2,097 °F	2,182 °F					ASTM D3682
	MAA Sum		91.80%	83.62%	68.89%					ASTM D3682
	Undetermined		8.20%	16.38%	31.11%					ASTM D3682
	MAA Basis		ignited	ignited	ignited					ASTM D3682
	MAA Type of Ash		LIGNITIC	LIGNITIC	LIGNITIC					ASTM D3682
	MAA silica Value		52.84%	50.54%	47.49%					ASTM D3682
	MAA Base Acid Ratic)	1.16%	1.12%	1.46%					ASTM D3682
	Fouling Index		6.52%	8.58%	9.97%					ASTM D3682
	Specific Na2O + K2O	D content	0.22	0.24					lb/MBTU	
			0.11	0.07					kg/GJ	
	Specific Alkali & Earl	th Alkali cont	0.48	0.55					lb/MBTU	
			0.19	0.15					kg/GJ	
	ratio of K2O to SiO2		42%	36%	25%			1		
			(1:2.4	1:2.8	1:3.9		iic mixture			
	amount SiO2 per kg		2.50	2.70	0.00				g/kg	

	MFP	from silo #1	pure particle board	MFP with 1% sand	MFP with 4% sand	MFP	as comparison	
	Jan 18 - sample #1	March 7 - sample #1	March 7 - sample #2	March 14 - sample #1	March 14 - sample #1	March 14 - sample #2	MDF (from Internet)	<u>Method</u>
FUSION TEMPERATURE OF ASH, F	REDUCING							
Initial Deformation	1,500 °F 816 °C	1,300 °F 704 °C	impact of	1,660 °F 904 °C	>2,700 °F >1,482 °C	1,420 °F 771 °C		ASTM D1857
Softening	1,540 °F <mark>838 °C</mark>	1,355 °F <mark>735 °C</mark>	sand	1,740 °F	>2,700 °F >1,482 °C	1,460 °F 793 °C		ASTM D1857
Hemispherical	1,590 °F 866 °C	1,410 °F 766 °C		1,820 °F 993 °C	>2,700 °F >1,482 °C	1,530 °F 832 °C		ASTM D1857
Fluid	1,630 °F 888 °C	1,530 °F 832 °C		1,960 °F 1,071 °C	>2,700 °F >1,482 °C	1,580 °F 860 °C		ASTM D1857
current amount of ash current amount of SiO2:	0.98% 25.50% 0.25%	1.08% 24.97% 0.27%	0.00% 20.28% 0.00%				of total wet fuel weight of ash weight of total wet fuel weight	
current amount of K2O:	10.67% 0.03% 1 · 2 4	9.00% 0.02% 1 · 2 8	5.17% 0.00% 1 · 3 9				of ash weight of total wet fuel weight	
required ratio of K2O to SiO2 required amount of SiO2:	1 : 7.0 74.69%	1 : 7.0 63.00%	1 : 7.0 36.19%				of ash weight	
amount of SiO2 to be added to f	0.73% 0.48% 4.8	0.68% 0.41% 4 1	0.00% 0.00%				of total wet fuel weight of total fuel weight a of SiO2 per ka of wet wood	fuel
	2.2 0.08 33.7	1.9 0.07 28.8	0.0 0.00 0.00				g of SiO2 per lb of wet wood oz of SiO2 per lb of wet wood grain of SiO2 per lb of wet wood	fuel I fuel pod fuel

172.8